
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Stability properties of solitary waves and periodic wave trains in a two-dimensional network
of spiking neurons

Werner M. Kistler*
Swiss Federal Institute of Technology-Lausanne, EPFL, 1015 Lausanne, Switzerland

~Received 5 April 2000!

We investigate solitary waves of excitation in a two-dimensional network of spiking neurons with distance-
dependent couplings. A continuum description is developed that does not require spatial or temporal averaging.
Using this description, propagation velocities and dispersion relations for solitary waves and periodic wave
trains can be calculated analytically. We show that the stability properties of solitary waves and wave trains are
dominated by form instabilities which are genuine to the two-dimensional nature of the system.

PACS number~s!: 87.18.Pj, 05.45.Yv, 84.35.1i
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Traveling waves are an intensely studied phenomeno
they occur in a large class of different systems—collectiv
termed excitable media—that range from physico-chem
reaction-diffusion~RD! systems to biological tissues such
muscle cells or neuronal networks. Several authors h
studied the evolution of neuronal activity in spatially e
tended but locally connected networks using either simu
tions of biophysical models@1–3# or simplified mathematica
models@4–7#. Mathematical models are usually based on
continuum approximation that relies on a temporal and s
tial coarse-graining of the microscopic variables@4#. Re-
cently, there has been growing interest in a slightly differ
class of models that describes the neuronal dynamics dire
in terms of individual action potentials instead of an avera
firing rate and thus does without temporal coarse-grain
@8–12#. Here we show that a continuum approximation c
be achieved even without averaging spatially. The c
tinuum model yields the same results as the underlying
crete model provided that the synaptic coupling strength
slowly varying function of the neuronal distance.

We consider a network of spiking neurons arranged o
two-dimensional grid. Each neuron is described by the sp
response model which is basically an integrated version
the integrate-and-fire model@13–15#. The membrane poten
tial Vi(t) of neuroni is given by

Vi~ t !5(
j

Ji j E
2`

t

dt8e~ t2t8!Sj~ t8!

1E
2`

t

dt8h~ t2t8!Si~ t8!, ~1!

with Sj (t)5( fd(t2t j
f) being the spike train of neuronj,

where each spike at firing timet j
f is represented by a Dira

pulse. The response of the membrane to an incoming ac
potential is described by means of a scalarJi j that is
the synoptic coupling strength, and a functione that has
the form of a typical postsynaptic potential, e.g.,e(t)
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5(t/t2)exp(2t/t)Q(t) with Q being the Heaviside step
function. Refractoriness is taken into account by adding
~negative! afterpotentialh whenever the neuron has fired. A
action potential is triggered as soon as the membrane po
tial reaches the firing thresholdq from below, i.e.,

Si~ t !5d@Vi~ t !2q#F d

dt
Vi~ t !G

1

. ~2!

Here, @•#1 denotes the positive part of the argument. Th
factor is necessary in order to produce a normalizedd func-
tion in time whenever the threshold is crossed with posit
slope.

A topology is induced on the set of neurons by assign
a spatial locationr iPR2 to each neuroni. We will assume
homogeneous and isotropic synaptic couplings, i.e., c
plingsJi j 5J(r i j ) that depend on the distancer i j of two neu-
rons. To be specific, we will use a ‘‘Mexican hat’’2type
interaction with excitation between nearby neurons an
weak inhibition between distant neurons, e.g.,

J~r !5a1 exp~2r 2/r1
2!2a2 exp~2r 2/r2

2!, ~3!

with a1.a2.0 andr1
2,r2

2 @8#.
For the sake of simplicity we assume that the neurons

distributed on a square lattice, e.g.,r iPZ2, and that each
point of the lattice contains exactly one neuron so that e
neuron is uniquely characterized by its spatial coordina
We can thus rewrite the membrane potentialVi(t) of neuron
i at positionr i asV(r i ,t) and, similarly, the spike trainSi(t)
as S(r i ,t). Both the membrane potentialV(r i ,t) and the
spike trainS(r i ,t) are now functions of spatial and tempor
variables, but, for the time being, the dependency upon
spatial variable is defined only for points on the grid. Wi
this notation the equations of motion 1 and 2 are of the fo

V~r,t !5(
j

J~ ir2r j i !E
2`

t

dt8e~ t2t8!S~r j ,t8!

1E
2`

t

dt8h~ t2t8!S~r,t8!, ~4!
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S~r,t !5d@V~r,t !2q#F ]

]t
V~r,t !G

1

, ~5!

for all tPR and rPZ2.
In order to simplify the forthcoming analysis we wou

like to have bothV and S being defined for all pointsr
PR2. The above equations show that there is indeed a n
ral extension ofV andS, if we drop the restrictionrPZ2 so
as to obtain aninterpolatedversion of both functions forr
PR2.

Up to now we have not made any approximations; E
~4! and ~5! evaluated atrPZ2 are still exact. In order to
proceed further, we introduce a continuum approximat
which consists of the replacement of the discrete sum o
all neuronsj by an integral over space,

V~r,t !5E
R2

d2r8J~ ir2r8i !E
2`

t

dt8e~ t2t8!S~r8,t8!

1E
2`

t

dt8h~ t2t8!S~r,t8!. ~6!

This approximation is valid, if the characteristic length sc
of the coupling functionJ is large as compared to the me
size of the grid, i.e., ifr2.r1@1. Note that the presen
derivation of the continuum equations leads to a normal
tion of the d-functions in time, which is different from the
normalization used in@8# and @12# ~see Refs.@11# and @12#
for a discussion of the normalization issue!.

Simulations of the underlying discrete network show th
this system exhibits a large variety of dynamical patte
such as traveling wave trains, rotating spirals, and expan
target patterns@8,16,17#—a phenomenology which is ver
similar to that of RD systems@18#. The analysis of these
patterns in the context of RD systems is often hampered
mathematical difficulties that are typical for nonlinear part
differential equations. The dynamical system defined by E
~5! and ~6!, however, allows for a surprisingly comprehe
sive analytical investigation as sketched below.

We start with an analysis of a solitary traveling wave.
we substitute an ansatz for a plane wave propagating
velocity v.0 in positivex-direction,

S~x,y,t !5d~ t2x/v !, ~7!

into Eq. ~6!, we can calculate the corresponding membra
potentialsV(r,t). Equation ~5! imposes a self-consistenc
condition on the ansatz, in the sense that the membrane
tential at the position of the wave front has to be equal to
firing thresholdq, i.e.,

q5E
2`

`

dyE
0

`

dx J@ iri #e~x/v !, ~8!

with r5(x,y); cf. @8,9#. Note that the afterpotentialh does
not show up in this expression because each neuron is fi
only once. Equation~8! is a relation for the propagation ve
locity v and the firing thresholdq consisting of a high- and
a low-velocity branch; cf. Fig. 1.

In a similar way we can also study the properties o
periodic arrangement of traveling waves. Using the ansa
u-
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S~x,y,t !5 (
n52`

`

d@ t2~x2nl!/v# ~9!

and exploiting the fact that Eq.~6! is linear in the spikes, we
can easily calculate the corresponding distribution of
membrane potentials. With this ansatz the neurons are fi
periodically so that a contribution of the afterpotential m
become important. Nevertheless, we will neglect this con
bution in order to avoid a further increase in the number
free parameters. There is no harm in doing so since the
terpotential depends on the firing frequency only and
results can thus be corrected with the benefit of hindsight
rescaling the dispersion relation@8#.

The self-consistency condition relates the free parame
of the ansatz, viz. wavelengthl and phase velocityv, to the
firing threshold. For fixed threshold we thus obtain a disp
sion relation in terms of spatial (k52p/l) and temporal
frequencies (v52pv/l) @8#,

FIG. 1. Propagation velocityv of a single plane front as a func
tion of the firing thresholdq ~thick line!. The long-dashed part o
this line indicates solutions that are unstable with respect to in
bilities with ky50. These instabilities show up in a one
dimensional setup as well. Thin dashed or dotted lines mark
domain of instabilities that show up only in two or more dime
sions, i.e., form instabilities withky.0; dots correspond to pertur
bations with Im(c)50 and dashes to Hopf-instabilities wit
Im(c).0. The filled circle marks the position of the bifurcatio
with ky50; open circles those withky.0. ~a! Parameters for the
coupling functionr1

2515, r2
25100, a151.2, anda250.2; cf. Eq.

~3!. Time constant of the postsynaptic potentialt54. ~b! Similar
plot as in A, but witha151.1 anda250.1. Note that there is a
small interval betweenv50.475 andv50.840 that corresponds to
fronts that are stable with respect to the perturbations consider
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q5 (
n52`

` E
R2

d2r J~ iri !e@~kx22pn!/v#, ~10!

with r5(x,y); cf. Fig. 2.
The stability of solutions of Eqs.~5! and ~6! is investi-

gated in terms of the neuronal firing time; cf. Ref.@11#. In
the case of a solitary wave we add a small perturba
u(x,y) to the firing time T(x,y)[x/v and substitute
S(x,y,t)5d@ t2T(x,y)2u(x,y)# into Eq. ~6!. After linear-
ization in u(x,y) the self-consistency condition for the pe
turbed wave leads to a Fredholm integral equation for
perturbation,

05E
R2

d2r8J~ ir2r8i !ė@~x2x8!/v#@u~r!2u~r8!#,

~11!

FIG. 2. ~a! Dispersion relation~solid lines! of periodic wave
trains for various values of the threshold parameterq50 ~upper-
most trace!, 0.1, . . . , 0.6~center!. Network parameters as in Fig
1~a!. The shading indicates solutions that are unstable with res
to perturbations withknP$0,p%; cf. Eq. ~13!. The unshaded~white!
region is bounded to the left by a form instability withkn50 and
ky.0 ~dots!. Its right border~dashes! is formed by a Hopf bifur-
cation withkn5p andky.0. The right branch of this curve cor
responds to the same type of bifurcation but withkn50. The re-
maining dotted lines to the left and to the right indicate fo
instabilities withkn5p. The long-dashed lines reflect bifurcation
with ky50, i.e., bifurcations that would show up in the correspon
ing one-dimensional setup.~b! Similar plot as in a but with a cou
pling function as in Fig. 1~b!. The firing threshold varies fromq
50 ~leftmost trace! to q51.0 ~center! in steps of 0.2.
n

e

with r5(x,y) and r85(x8,y8). The dot on thee kernel de-
notes derivation with respect to the argument.

While performing a linear stability analysis we conce
trate on a single Fourier component of the perturbation, e
on

u~x,y!5exp~cx!cos~kyy!, ~12!

so that the integrals in Eq.~11! can be carried out. The abov
ansatz for the perturbation in terms of the firing time is
course not the most general one because we have restr
ourself to perturbations that travel with the same velocity
the front. Rigorous statements regarding the overall stab
of the wave are therefore not possible. Nevertheless, a
ticular solitary wave isunstableif Eq. ~11! can be solved by
~12! with Re(c).0.

Figure 1 shows the propagation velocity as a function
the firing threshold together with the results of the line
stability analysis. We first looked for instabilities withky
50, i.e., for instabilities that do not affect the form of th
wave. This type of instability shows up in a one-dimension
setup as well. We find that the low-velocity branch is u
stable because of a Hopf bifurcation close to the knee of
v-q curve~long dashed line in Fig. 1!. The same result was
obtained by Bressloff for a one-dimensional system
integrate-and-fire neurons@11#.

In a two-dimensional system we expect that instabilit
play an important role that tend to bend the initially pla
wave front. In fact, the present system exhibits several fo
instabilities (ky.0) that are genuine to the two-dimension
setup. The most important one destabilizes the high-velo
branch through a bifurcation slightly above the knee of
v-q curve; cf. Fig. 1. Other form instabilities affect the low
velocity branch through Im(c)50 and Hopf bifurcations as
well. Depending on the remaining free parameters that
scribe the shape of the coupling function the domains of
high- and the low-velocity instability may overlap so th
none of the waves is stable@Fig. 1~a!#. At most, there is a
narrow interval for the firing threshold that allows plane so
tary waves to be stable@Fig. 1~b!#.

In order to investigate the stability of the periodic wa
train we consider small perturbationsun(r) added to thenth
firing time Tn(r) of a neuron located at positionr,

Tn~x,y!5~x2nl!/v1un~x,y!. ~13!

If we proceed as before we finally obtain a set of equatio
for the perturbations,

05 (
n52`

` E
R2

d2r8J~ ir2r8i !@um~r!2un~r8!#

3 ė@~x2x81nl2ml!/v#, ~14!

with mPZ. To be specific, we consider perturbations of t
form

un~x,y!5exp@c~x2nl!#cos~knn!cos~kyy!, ~15!

with kn50 ~perturbations on neighboring fronts in phase! or
kn5p ~opposite phase! which results in a reduction of the
system~14! to a single linearly independent equation.
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Figure 2 summarizes the result of the linear stabi
analysis. The area below and to the right of the two lon
dashed lines is found to be unstable with respect to per
bations with ky50. This would be the result of a linea
stability analysis in the corresponding one-dimensional s
tem. In two dimensions, however, the wave train is ch
lenged by instabilities withky.0 that deviate from the pla
nar form of the waves. These form instabilities sever
restrict the domain of stable wave trains in the dispers
relation; cf. the shading in Fig. 2. Interestingly, there is
region in the dispersion relation of Fig. 2~a! that corresponds
to wave trains that are stable~with respect to the considere
perturbations! though all individual traveling waves are un
stable; cf. Fig. 1~a!. Individual waves in a wave train thu
seem to stabilize each other.
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In this article we have studied properties of traveli
waves in a two-dimensional network that is supposed to b
simplistic model of the virtually two-dimensional archite
ture of the cortex. It turned out that stability properties in tw
dimensions are much more complex than those of the co
sponding one-dimensional system. The success of
present analysis is due to the use of a pure threshold no
earity in Eq.~5!. It has been shown previously that a certa
type of nonlinear differential equation can be faithful
mapped on a response kernel formalism plus thresh
nonlinearity@15#. This formalism has been used here to d
scribe a single neuron. Forthcoming work will show wheth
it is possible to use this technique in order to establish
relation between the present type of model and RD syst
@18# so as to gain further insight into both.
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