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Stability properties of solitary waves and periodic wave trains in a two-dimensional network
of spiking neurons
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We investigate solitary waves of excitation in a two-dimensional network of spiking neurons with distance-
dependent couplings. A continuum description is developed that does not require spatial or temporal averaging.
Using this description, propagation velocities and dispersion relations for solitary waves and periodic wave
trains can be calculated analytically. We show that the stability properties of solitary waves and wave trains are
dominated by form instabilities which are genuine to the two-dimensional nature of the system.

PACS numbg(s): 87.18.Pj, 05.45.Yv, 84.35.i

Traveling waves are an intensely studied phenomenon as (t/7)exp(—t/7)®(t) with ® being the Heaviside step-
they occur in a large class of different systems—collectivelyfunction. Refractoriness is taken into account by adding a
termed excitable media—that range from physico-chemicalnegative afterpotentiak; whenever the neuron has fired. An
reaction-diffusion(RD) systems to biological tissues such asaction potential is triggered as soon as the membrane poten-
muscle cells or neuronal networks. Several authors havgal reaches the firing thresholdl from below, i.e.,
studied the evolution of neuronal activity in spatially ex-
tended but locally connected networks using either simula-
tions of biophysical modelgl—3] or simplified mathematical Si(H)=4LVi(t) - 9]
models[4-7]. Mathematical models are usually based on a
continuum approximation that relies on a temporal and sp
tial coarse-graining of the microscopic variablel. Re-
cently, there has been growing interest in a slightly differen
class of models that describes the neuronal dynamics direct

in terms of individual action potentials instead of an average A topology is induced on the set of neurons by assigning
firing rate and thus does without temporal coarse-graining5l spatial locatio; < R2 to each neuror. We will assume
el .

[8-12. _Here we ShOW. that a continuum approximation Canhomogeneous and isotropic synaptic couplings, i.e., cou-
be achieved even without averaging spatially. The con-

i . . . plings J;;=J(rj;) that depend on the distancg of two neu-
inuum model yields the same results as the underlying di fons. To be specific, we will use a “Mexican hattype
crete model provided that the synaptic coupling strength is ﬂwteréction with excit’ation between nearby neurons and a
slowly varying function of the neuronal distance. weak inhibition between distant neurons, e.g

We consider a network of spiking neurons arranged on a e
two-dimensional grid. Each neuron is described by the spike
response model which is basically an integrated version of
the integrate-and-fire modgl3-15. The membrane poten-
tial V;(t) of neuroni is given by

d
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+

aHere,[~]+ denotes the positive part of the argument. This
factor is necessary in order to produce a normali@dgdnc-

ion in time whenever the threshold is crossed with positive
ope.

Jr)=a;exp—r’/p))—aexp(—r?p3), (3

with a;>a,>0 andp?<p3 [8].
For the sake of simplicity we assume that the neurons are
. distributed on a square lattice, e.g,e 72, and that each
Vi) =, Jijf dt’ e(t—t)S(t") point of the lattice contains exactly one neuron so that each
i — neuron is uniquely characterized by its spatial coordinates.
. We can thus rewrite the membrane potentiglt) of neuron
+f dt’ n(t—t")S(t"), (1) i at positionr; asV(r;,t) and, similarly, the spike traif;(t)
—o as S(r;,t). Both the membrane potentidi(r;,t) and the
spike trainS(r; ,t) are now functions of spatial and temporal
with Sj(t)=2f5(t—t]f) being the spike train of neuroj varia}bles, _but, fqr the. time being, the. dependency 'upon.the
where each spike at firing timé is represented by a Dirac Spatial variable is defined only for points on the grid. With
pulse. The response of the membrane to an incoming actioiis notation the equations of motion 1 and 2 are of the form
potential is described by means of a scalyr that is .
the synoptic couplmg strength, anq a funcgenthat has V(r,t)=2 J(||r—fj||)f dt’ e(t—t")S(r; ,t')
the form of a typical postsynaptic potential, e.g(t) j —w

+£ dt’ p(t—t")S(r,t’), @
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J 0.8 FX
S(r,t):6[V(r,t)—ﬂ][EV(r,t) , (5
’ 0.6

for all te R andre 72. .

In order to simplify the forthcoming analysis we would Z 04
like to have bothV and S being defined for all points °
e R2. The above equations show that there is indeed a natu- >
ral extension ol andS, if we drop the restrictiom e 72 so 0.2
as tzo obtain arinterpolatedversion of both functions for

Up to now we have not made any approximations; Egs. ° 0 0.2 04 06
(4) and (5) evaluated atr e 7? are still exact. In order to threshold ¢
proceed further, we introduce a continuum approximation @

which consists of the replacement of the discrete sum over
all neurong by an integral over space,

t
V(r,t)=fﬁzdzr’\](||r—r’||)f

dt’ e(t—t")S(r',t")

velocity v

+ft dt’ p(t—t")S(r,t"). (6)

This approximation is valid, if the characteristic length scale
of the coupling function] is large as compared to the mesh

size of the grid, i.e., ifp,>p;>1. Note that the present 0 02 04 06 08 1
derivation of the continuum equations leads to a normaliza- threshold &
tion of the é-functionsin time, which is different from the ()

normalization used i8] and[12] (see Refs[11] and[12] FIG. 1. Propagation velocity of a single plane front as a func-
for a discussion of the normalization issue tion of the firing thresholdd (thick line). The long-dashed part of

~Simulations of the underlying discrete network show thatipjs |ine indicates solutions that are unstable with respect to insta-
this system exhibits a large variety of dynamical patternsjjities with «,=0. These instabilities show up in a one-
such as traveling wave trains, rotating spirals, and expandingimensional setup as well. Thin dashed or dotted lines mark the
target pattern$8,16,17—a phenomenology which is very domain of instabilities that show up only in two or more dimen-
similar to that of RD system§18]. The analysis of these sions, i.e., form instabilities witx,>0; dots correspond to pertur-
patterns in the context of RD systems is often hampered bjations with Img)=0 and dashes to Hopf-instabilities with
mathematical difficulties that are typical for nonlinear partiallm(c)>0. The filled circle marks the position of the bifurcation
differential equations. The dynamical system defined by Eqswith x,=0; open circles those witlk,>0. (a) Parameters for the
(5) and (6), however, allows for a surprisingly comprehen- coupling functionpf=15, p3=100, a,=1.2, anda,=0.2; cf. Eq.
sive analytical investigation as sketched below. (3). Time constant of the postsynaptic potentiat4. (b) Similar

We start with an analysis of a solitary traveling wave. If plot as in A, but witha;=1.1 anda,=0.1. Note that there is a

we Substltute an ansatz for a plane wave propagat|ng Wnﬁmall interval between =0.475 andv =0.840 that Corresponds to
velocity v>0 in positivex-direction fronts that are stable with respect to the perturbations considered.

S(x,y,t)=d(t—x/v), (7) S(x.y.1)= 2 St—(x=n\)/v] ©)

into Eqg. (6), we can calculate the corresponding membrane T

potentialsV(r,t). Equation(5) imposes a self-consistency and exploiting the fact that E@6) is linear in the spikes, we
condition on the ansatz, in the sense that the membrane pean easily calculate the corresponding distribution of the
tential at the position of the wave front has to be equal to thenembrane potentials. With this ansatz the neurons are firing

firing thresholdd, i.e., periodically so that a contribution of the afterpotential may
become important. Nevertheless, we will neglect this contri-

_ |- - bution in order to avoid a further increase in the number of
9= fﬁwdyfo dx X[rlleCxtv), ® free parameters. There is no harm in doing so since the af-

terpotential depends on the firing frequency only and the

with r=(x,y); cf. [8,9]. Note that the afterpotentiaj does results can thus be corrected with the benefit of hindsight by
not show up in this expression because each neuron is firingscaling the dispersion relati¢8].
only once. Equatiori8) is a relation for the propagation ve-  The self-consistency condition relates the free parameters
locity v and the firing threshold consisting of a high- and of the ansatz, viz. wavelengthand phase velocity, to the
a low-velocity branch; cf. Fig. 1. firing threshold. For fixed threshold we thus obtain a disper-

In a similar way we can also study the properties of asion relation in terms of spatialk&2#7/\) and temporal
periodic arrangement of traveling waves. Using the ansatz frequencies ¢ =2mv/\) [8],
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0.2 with r=(x,y) andr’'=(x',y’). The dot on thee kernel de-
ﬂ notes derivation with respect to the argument.

0145 ’ While performing a linear stability analysis we concen-
3 /’ trate on a single Fourier component of the perturbation, e.g.,
2y 7 on
g 01
g u(X,y) =exp(cx)cos x,Y), (12)

005 so that the integrals in Eq11) can be carried out. The above

ansatz for the perturbation in terms of the firing time is of
course not the most general one because we have restricted
¢ o'zwaveoﬁﬁmbe?ke e ourself to perturbations that travel with the same velocity as
(a) the front. Rigorous statements regarding the overall stability
of the wave are therefore not possible. Nevertheless, a par-
ticular solitary wave isunstableif Eq. (11) can be solved by
(12) with Re(c)>0.

Figure 1 shows the propagation velocity as a function of
the firing threshold together with the results of the linear
stability analysis. We first looked for instabilities witk,
=0, i.e., for instabilities that do not affect the form of the
wave. This type of instability shows up in a one-dimensional
setup as well. We find that the low-velocity branch is un-
stable because of a Hopf bifurcation close to the knee of the
v-U curve(long dashed line in Fig.)1 The same result was

0 02 04 06 08 obtained by Bressloff for a one-dimensional system of
wave number k integrate-and-fire neurong1].
() In a two-dimensional system we expect that instabilities

FIG. 2. (a) Dispersion relation(solid lineg of periodic wave play an important role that tend to bend the_ initially plane
trains for various values of the threshold parameter0 (upper- ~ Wave front. In fact, the present system exhibits several form
most tracg 0.1, ... , 0.6(centej. Network parameters as in Fig. instabilities (<,>0) that are genuine to the two-dimensional
1(a). The shading indicates solutions that are unstable with respe&€etup. The most important one destabilizes the high-velocity
to perturbations withc, e {0,7}; cf. Eq.(13). The unshadedwhite) branch through a bifurcation slightly above the knee of the
region is bounded to the left by a form instability with=0 and  v-¥ curve; cf. Fig. 1. Other form instabilities affect the low-
ky>0 (dots. Its right border(dashesis formed by a Hopf bifur-  velocity branch through In®) =0 and Hopf bifurcations as
cation with k,= 7 and x,>0. The right branch of this curve cor- well. Depending on the remaining free parameters that de-
responds to the same type of bifurcation but with=0. The re-  scribe the shape of the coupling function the domains of the
maining dotted lines to the left and to the right indicate form high- and the low-velocity instability may overlap so that
instabilities with«,,= 7. The long-dashed lines reflect bifurcations none of the waves is stab[&ig. 1(a)]. At most, there is a
with x,=0, i.e., bifurcations that would show up in the correspond-narrow interval for the firing threshold that allows plane soli-
ing one-dimensional setugb) Similar plot as in a but with a cou- tary waves to be stablgig. 1(b)].
pling function as in Fig. (). The firing threshold varies frond In order to investigate the stability of the periodic wave
=0 (leftmost tracg to =1.0 (cente in steps of 0.2. train we consider small perturbationg(r) added to thenth
firing time T,(r) of a neuron located at positian

0.2

0.15

0.1

frequency w

0.05

e f2d2rJ(||r||)e[(kx—2wn)/w], (10) Ta(X,y)=(X=nN)/v+Un(Xy). (13
n=—=x JR

If we proceed as before we finally obtain a set of equations

for the perturbations,
with r=(x,y); cf. Fig. 2.

The stability of solutions of Eq95) and (6) is investi- * )
gated in terms of the neuronal firing time; cf. REE1]. In 0= Z LA I(lIr=r[DLum(r) = un(r")]
the case of a solitary wave we add a small perturbation T R
u(x,y) to the firing time T(x,y)=x/v and substitute X e[ (X=X + N\ —m\)/u], (14)

S(x,y,t) =8 t—T(x,y)—u(x,y)] into Eqg. (6). After linear-

ization inu(x,y) the self-consistency condition for the per- with me 7. To be specific, we consider perturbations of the
turbed wave leads to a Fredholm integral equation for thegrm

perturbation,

Un(X,y) =exg c(x—n\)]cog kpn)cog kyy), (15

with x,= 0 (perturbations on neighboring fronts in phase
k,= 7 (opposite phagewhich results in a reduction of the
(11) system(14) to a single linearly independent equation.

0= | et adle=r/ e te=xvTrucn - ur))
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Figure 2 summarizes the result of the linear stability In this article we have studied properties of traveling
analysis. The area below and to the right of the two longwaves in a two-dimensional network that is supposed to be a
dashed lines is found to be unstable with respect to pertuisimplistic model of the virtually two-dimensional architec-
bations with x,=0. This would be the result of a linear ture of the cortex. It turned out that stability properties in two
stability analysis in the corresponding one-dimensional sysdimensions are much more complex than those of the corre-
tem. In two dimensions, however, the wave train is chal-sponding one-dimensional system. The success of the
lenged by instabilities withe,>0 that deviate from the pla- present analysis is due to the use of a pure threshold nonlin-
nar form of the waves. These form instabilities severelyearity in Eq.(5). It has been shown previously that a certain
restrict the domain of stable wave trains in the dispersiortype of nonlinear differential equation can be faithfully
relation; cf. the shading in Fig. 2. Interestingly, there is amapped on a response kernel formalism plus threshold-
region in the dispersion relation of Fig(a that corresponds nonlinearity[15]. This formalism has been used here to de-
to wave trains that are stableith respect to the considered scribe a single neuron. Forthcoming work will show whether
perturbations though all individual traveling waves are un- it is possible to use this technique in order to establish a
stable; cf. Fig. 1a). Individual waves in a wave train thus relation between the present type of model and RD systems
seem to stabilize each other. [18] so as to gain further insight into both.
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